Category Archives: Software & Testing Solutions


Electrification – Software and Testing Solutions

15. October 2019 | Software & Testing Solutions

Electrification – Software and Testing Solutions

Within the next ten years, electric vehicles are expected to account for 90 percent of the market, including full-electric vehicles and various versions of hybrid vehicles. Many new test benches for e-mobility and batteries are being built. So what are the key points we need to understand for this new type of bench? How can we find our way around this new world of tests for electric or hybrid vehicles?

The list of challenges is long. First, and most importantly, are battery tests. Today’s lithium ion batteries provide an energy density 20 to 30 times inferior to gasoline, and to achieve cost parity with a petrol-driven vehicles, we have to cut their costs four-fold. This cannot be done overnight, but the calibration of the BMS (Battery Management System) must be optimized immediately, which requires precise means of optimization on the test bench. For battery test benches, a highly automated and staff-saving process is required. It must be able to react and supervise all the test benches in real time. File formats must be identical, irrespective of their source. In some centers, each device has a different file format, which affects the center’s productivity. In addition, safety is a prime concern with batteries. Great attention must be paid to extreme conditions, in which the internal chemistry in the battery can go out of control. Severe battery tests are necessary, including fire tests, overvoltage tests, crash tests or tests in which the battery goes completely discharged. While the battery is the most sensitive element to be tested, testing electric motors also presents technological issues. Upcoming motors can reach up to 25,000 rpm. In some phases, the temperature suddenly rises, to the detriment of the motor’s longevity. In this case too, the optimization of the global Energy Management System (EMS) will allow critical cases to be managed, increasing the life span of the e-motor.

FEV summarizes the keys to e-mobility test center and system development by highlighting three points: the automated management and global supervision of the processes and the test benches, using the FEVFLEX™ and MORPHEE® software suites. The standardisation of test bench solutions, or Test Cell Products. And, the calibration of the controllers and the optimization of energy management, which demands the extended use of simulation. This vision is the result of more than ten years of experience, with two test centers in Munich and Saint Quentinen-Yvelines (France), equipped with 22 test benches to test batteries, and numerous e-motor and e-axle cells.

Fevflex und Morphee testing process for e-mobility

Fully automated process
A fully automated process is a key factor in any modern test center, but it is particularly important in battery test centers. This is done through software, such as FEVFLEX™ and MORPHEE®. FEVFLEX™ is a modular software suite dedicated to manage and monitor the entire test field. (For more information on using FEVFLEX™ in an e-mobility and battery test center, see article “Expertise and capacity for e-testing projects”, pages 40). All the information sent to FEVFLEX™ is produced by MORPHEE®, FEV’s automation system. The electric revolution is only just starting. Batteries, electric motors and general vehicle architectures are set to evolve even further. In this respect, FEVFLEX™ and MORPHEE®’s upgradeability and applicability makes it a complete must. These open tools can be easily configured by the user, at no additional development cost. MORPHEE can be connected to all types of devices using the same programming interface. It produces and synchronises result files in an identical format, irrespective of the equipment used.

FEV Osiris Powermeter

Test cell products: standard solutions
2019 will be a very special year for ­FEV Software and Testing Solutions , with the launch of the test cell products and standard test bench solutions. Over the years, many benches have been built, both on FEV’s own sites and on customer sites in Europe, Asia and America, ranging from complete engineering projects, to simple automation. FEV has built on this experience to develop standard test bench solutions, or test cell products, that use FEV’s products and products from approved suppliers. Thanks to this standardization, FEV can control costs and propose shorter deployment cycles. This offer covers all the necessary dimensions of the field of electric vehicles, and the safety-related aspects in particular.

FEV proposes battery test benches covering every test case: cell benches with up to 24 cells per climate-controlled chamber, module benches with up to six modules and integrated pack benches, either in walk-in chambers, or in king-sized climate-controlled chambers.

FEV also proposes standard e-motor test benches that can be used to characterise electric motors. The key aspect of this type of test bench is its ability to test at very high speeds and in a highly-dynamic process where vibrations are taken into consideration. FEV produces state-of-the-art e-motor test benches, including dynamometers. It offers e-motor test bench solutions enabling rotational speeds of 25,000. The MORPHEE® solution used to control the bench replaces the bench controller, offering very easy connectivity with the calculators. The e-powertrain is optimized by taking several use cases (motorways, urban environments or rural areas) and several factors (voltage and current signals, frequency versus angular position and speed, transient torque management etc.) into consideration. In this case, FEV’s OSIRIS® Powermeter serves to analyse the efficiency of the e-powertrain system by measuring the power before and after the inverter and before and after the e-motor.

FEV offers unique solutions facilitating not only the optimization, but also the validation of the complete driveline. Durability tests simulating mechanical cycles (vibrations, reducer, differential) and thermal shocks (cooling, rotor thermal management) must also be conducted. In this configuration, a good solution is to test not only the e-motor, but also the complete drive chain. On the so-called e-axle test bench it is possible to test the entire system in the downstream steps of the development process and involves using both MORPHEE® and OSIRIS®, as well as FEV dynamometers and conditioning units for fluid cooling – the so-called eCoolCon™.

FEV e-CoolCon

Energy Management System optimization
The final key factor of success of an e-mobility test center is its capacity to optimize the calibration of the various calculators and the EMS (Energy Management System) of the drivetrain. This was already one of FEV’s strengths in the field of conventional engines, and it is still the case with electric or hybrid motors. FEV has achieved this by developing tools with two characteristic features: a very high level of performance and complete compatibility with one another. In the initial development phases, xMOD™, a virtual experimentation and co-simulation platform, creates a system that was complex to develop by co-simulating the different models that describe it: the electric motor, battery, driver, complete vehicle, etc. Consequently, virtual experiments can be made on the same platform in order to prevalidate the control laws. In the following step, the bench controlled by MORPHEE® – in this case the battery and BMS bench or the e-powertrain bench – is used to integrate the previously validated models by replacing the battery or e-motor model by the physical part, and by keeping all the other parts to produce the most accurate representation possible of the drivetrain in its environment. Since xMOD™ and MORPHEE® share the same DNA, the interfaces, tests and models all follow the same process, from the beginning to the end, in what FEV calls the Collaborative Framework. It should also be noted, that the exceptional simulation performances of these tools, which are 10 to 40 times faster than any other solution on the market, enable highly complex models to run on the test bench in real time.

Morphee Desk and Simulation Screenshot

Future Mobility

The Balance Between Complex Testing Tasks and Effective Development in Testing Environments

11. September 2017 | Software & Testing Solutions

The Balance Between Complex Testing Tasks and Effective Development in Testing Environments

The areas of mobility and transportation are undergoing a heavily accelerated process of change. Traditional global mega-trends encompass widely differentiated user-specific and customer-specific requirements, different laws, ever stricter environmental regulations, limited resources and the electrification of drive systems. In addition, issues such as autonomous vehicles and customized, on-demand mobility solutions are growing in importance. Coming up with solutions and products requires completely new approaches on top of the established technologies, where constant advancements are needed. Examples of such approaches include digitization, information technology and networking.

The increasing complexity and differentiation result in stricter requirements that cannot be met in acceptable time frames at an acceptable cost level using established methods and processes. New, customized and specifically designed solutions and products must be developed to overcome these challenges.

Over the past years, advanced and high-performance simulation processes have become established as a main pillar in the portfolio of vehicle and drive system development. Numerous conventional methods of testing and proving have been partially or completely replaced by computer simulation. Increasing system complexity and validation requirements today and in the future, however, require specifically tailored testing solutions to validate functional reliability, quality, etc.
The suitably powerful testing capacity available provided in today’s cutting-edge development environment is no longer limited to mere logistical and technological solutions such as test rigs and measurement systems. For services to be highly efficient, all stakeholders need to be appropriately involved in the entire process of development. Besides designing and equipping the testing environment, this includes areas such as personnel structure and expertise, methods, operational organization, highly efficient logistics, information networking, and more.

Future Testing Environment Strategies

The design of future testing environments must be based on medium-term and long-term strategic product development planning and the testing requirements derived from it. They must do more than meet the simple engineering, operational, and logistical requirements. In particular, they need to be cost-effective, have a balance between operating capacity and personnel resources (and ensure they are utilized to the greatest possible extent), and assign work sensibly between what covers their own needs and what is commissioned by customers.

Testing Environment Organization and Processes

The organization and processes of modern testing environments have changed fundamentally in recent years. In the past, workers from development departments were often very extensively involved in the testing environment operations, sometimes even having a say in how they were conducted. The testing environment staff essentially represented the facility’s capacity, resources, and operators. Responsibility for defining the testing program and performing evaluations rested with the engineering department.

Over the past few years, various tasks have been shifted from engineering to the testing environments. Today, many testing environment crews are, for the most part, independently in charge of generating all test results. It takes adequate human resources and engineering capacity to perform these additional duties. That includes making the testing environment responsible for all processes and their design as well as medium-term and long-term structural orientation and investment budgeting.

Staff: Structure and Authority

The increasing transfer of numerous duties from engineering to the testing environment’s area of responsibility is creating a need for a greater number of engineers in current personnel structures and ranges of expertise. In the past, the largest share of a testing environment’s staff by far consisted of mechanics and some electricians and foremen with very few engineers. Today, the percentage of technicians and engineers has risen sharply. Added to that are IT and other specialists of various disciplines, who take care of the sophisticated test rig automation systems, measurement systems, and various software tools.

Logistics, Plus Flows of Information, Materials, and Data

Organizing modern testing environment operations to be efficient and economical requires the implementation of processes structured to be efficient and flexible from end to end and which can be adapted to meet changing requirements. This includes information management, which encompasses the handling and distribution of all incoming, internally circulating, and outgoing information, the management of experimental and measurement data plus material flows and logistics, quality management, and more. All primary and support processes need to mesh with each other smoothly and require continuous assessment, adjustment, and optimization.

Graphic - FEV Testcenter efficiency

Working and Testing Methods

Today’s advanced testing environments already use IT-based methods and tools to a large extent for organizing processes and performing work. Examples include databases used to aid in the preparation of project-specific test rig set-up and program plans, largely standardized test rig and measurement systems, highly automated running of test programs, integrated computer simulation tools, automated evaluation of test runs, and databases used to file test results.

The FEVFLEX information management software offered by FEV is a powerful solution for managing tasks, procedures, devices, media, test objects, test rigs, measurement data, and test projects, thereby contributing sustainably to a testing center’s efficiency. In addition, FEV MORPHEE significantly lowers the variety of software applications conventionally needed on test rigs. No matter if ECU (HIL), component, engine, powertrain, vehicle, or others: MORPHEE adapts to any kind of test environment.

Further reductions in time and costs of the development process can be achieved with Online and Offline-DoE tools for virtual calibration. FEV xCAL combines best-in-class modeling algorithms with an intuitive, workflow-based interface, thus enabling virtual and efficient calibration of a wide variety of powertrains and other applications.

Structure and Equipment

Today’s high-tech testing environments provide environmental simulation systems as well as traditional equipment such as test benches for engines, transmissions, vehicles, system components, and measuring equipment. In the future, there will be more new testing systems for conducting every test necessary in the field of autonomous vehicles. In recent years, high-performance computer simulation tools have replaced conventional testing methods, with new methods and procedures for testing being created. One example of this is the real-time networking of various subsystem test rigs with the built-in simulation of the system components of an entire powertrain that are not available in physical form.

For instance, FEV and the Institute for Combustion Engines (VKA) have developed the “virtual shaft” as an important tool. The test environment consists of physically separate test benches that are linked by a real-time EtherCAT connection. Thanks to the virtual shaft, the dynamometers in both component test benches are controlled in such a way that system behavior matches that of a real mechanical shaft. This enables us to recreate interactions – such as between an engine and a transmission – as early as the prototype stage before the two components can be physically adapted. That saves valuable time in development. Other benefits mainly include a protected test environment and a high number of options for monitoring individual test objects. This way, damage to prototypes can be effectively prevented. In addition, the virtual shaft allows the testing of hybrid powertrain combinations that are not yet mechanically compatible and would otherwise have to undergo extensive adaptation.

Graphic - FEV Testcenter efficiency

Virtual wave between two testing facilites