Expertise and Capacity for e-testing projects

Testing Facilities

18. October 2019 | Software & Testing Solutions

In the coming year, FEV plans to open two new battery test centers – one in Germany and the other one in France. Additionally, new e-motor and e-axle test benches have been integrated into FEV’s test centers and on customer sites. Based upon long-term planning and construction experience with FEV’s own test cells and test centers, as well as in numerous customer projects, FEV provides an effective methodology for specification development, concept layout and planning for e-mobility test benches, test cells and test centers, this methodology covers hardware (test equipment, technical infrastructure, building), software (data management), logistic and operation aspects.

Based upon FEV’s long-term experience, the sustainable success for the construction of new test cells and test centers is highly influenced from quality and completeness of the specification and planning phases. Precise requirement analysis, complete specification development and well-designed concept development are the key factors which deliver the solid foundation for a successful realization of these projects. Due to the extensive experience acquired by FEV, the described project phases can be actively organized and guided in close collaboration with future users/ customers in order to ensure the development of sustainable and cost-effective solutions which cover future requirements to the highest possible degree.

The final goal is to develop a technical solution covering building construction aspects, concepts for the test cells and test benches, laboratories, workshops, the technical infrastructure including supply media and energy supply, furthermore operational and logistical issues. Due to long-term, global experience, FEV’s experts provide the right solutions. They have the in-depth knowledge and experience gained in the construction of their own test centers for the mobility of the future to support customers. They use specific calculation and simulation tools to simulate the different scenarios.

1: Questions to be asked at the beginning of a test center building project

Boosting the test center performance

In state-of-the-art test centers, the visible parts, such as the buildings, the building infrastructure and the test benches can no longer be separated from the invisible parts – the comprehensive information system with a high automation degree.

Let’s evaluate how this information system controls the workflow and use cases in a battery test center. When the battery pack, module or cells and (sub-) components are received, a bar code is created that follows the Unit Under Test (UUT) throughout the entire workflow. The UUT is taken from a safe storage room and subsequently equipped with sensors and measuring devices in a preparation area. The availability and maintenance status of resources (equipment, test benches, employees) is documented in a database, thereby supporting an efficient and effective planning and assignment of UUT and resources. After the installation of the UUT at the test bench, the test programme is executed, followed by the post processing of the measurement data being acquired via the automation system and further measuring devices. The measurement data is checked regarding plausibility and finally documented in standardized test reports. The information system allows data on the UUT, the assigned resources, the test program and test results to be logically linked throughout the workflow. The above information system is based on the FEVFLEX™ software suite.

This modular, layer-based suite features dedicated modules for managing the main workflow of a test center, starting from the test demands up to the final test reports:

  • Enterprise functionality at the layer of the overall test center:

FEVFLEX™ facilitates experiments in the field of simulation, benchmarking, and component and system test benches up to vehicle fleet tests, as well as combinations of those. At this layer, work orders are created by combining data from ERP and MES systems (e. g. customer and project data, cost centers) with information on the UUT, the test program and the availability and status of resources (equipment, test benches, employees). Tasks are planned and subsequently assigned to test benches and resources. Moreover, FEVFLEX™ allows the UUT and its (sub-) components to be defined in a Build of Material (BOM) list – well known from benchmarking contexts – thereby supporting UUT life cycle control. In the final stage of the workflow, FEVFLEX™ handles test results from any source (benchmark or simulation data and measurement data obtained from the automation system and measuring devices), which are subsequently time-synchronized and pushed to data evaluation tools.

  • Host system functionality as binding factor between test center and test benches:

FLEX Lab™ takes care of the overall data handling and parametrization of MORPHEE® automation systems at component and system test benches. At this layer, the FEVFLEX™ work orders are translated into the preparation of the automation system resulting in a base parametrization (including e.g. a measuring plan, channel limits, log lists, integration of measuring devices, test program).
Furthermore FLEX Lab™ supports the management of MORPHEE® configurations, including back-up and versioning. Launching the execution of test programs at the test bench is secured via communication between the FLEX Lab™ host system and the MORPHEE® automation system. Finally, FLEX Lab™ pushes the measurement data, which was acquired via the automation system to data evaluation tools, such as UniPlot.

2: Process managed by FEVFLEX™ in an e-mobility test center

As a final conclusion, the workflow in FEVFLEX™ is supported by SCADA remote monitoring and run-time statistics:

  • Remote monitoring supports immediate alerts and interventions in case of incidents
  • Run-time statistics support facility managers to repair weaknesses in their workflow sustainably

With the help of this comprehensive information system based on the FEVFLEX™, an effective test bench usage of 95 percent was reached in FEV’s battery durability test center.